首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A numerical study on statistical temporal scales in inertia particle dispersion
Authors:B Wang  HQ ZhangM Manhart  CK Chan
Institution:
  • a School of Aerospace, Tsinghua University, Beijing, 100084, China
  • b Fachgebiet Hydromechanik, Technische Universität München, D-80290 München, Germany
  • c Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong
  • Abstract:The statistical temporal scales involved in inertia particle dispersion are analyzed numerically. The numerical method of large eddy simulation, solving a filtered Navier-Stokes equation, is utilized to calculate fully developed turbulent channel flows with Reynolds numbers of 180 and 640, and the particle Lagrangian trajectory method is employed to track inertia particles released into the flow fields. The Lagrangian and Eulerian temporal scales are obtained statistically for fluid tracer particles and three different inertia particles with Stokes numbers of 1, 10 and 100. The Eulerian temporal scales, decreasing with the velocity of advection from the wall to the channel central plane, are smaller than the Lagrangian ones. The Lagrangian temporal scales of inertia particles increase with the particle Stokes number. The Lagrangian temporal scales of the fluid phase ‘seen’ by inertia particles are separate from those of the fluid phase, where inertia particles travel in turbulent vortices, due to the particle inertia and particle trajectory crossing effects. The effects of the Reynolds number on the integral temporal scales are also discussed. The results are worthy of use in examining and developing engineering prediction models of particle dispersion.
    Keywords:Numerical analysis  Large eddy simulation (LES)  Particle Lagrangian trajectory model  Temporal scales  Two-phase flow  Turbulent channel flow
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号