首页 | 本学科首页   官方微博 | 高级检索  
     


Flow-induced patterning of Langmuir monolayers
Authors:Vogel Michael J  Miraghaie Reza  Lopez Juan M  Hirsa Amir H
Affiliation:School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA.
Abstract:Insoluble monolayers on water have been patterned at the macroscopic scale (i.e., at the centimeter scale of the flow apparatus) as well as the mesoscopic scale (i.e., down to the micron scale resolvable via optical microscopy). The macroscopic patterning at the air/water interface results from a hydrodynamic instability leading to a steadily precessing flow pattern. The velocity field is measured, and the associated shear stress at the interface is shown to be locally amplified by the flow pattern. The resulting hydrodynamic effects on two different monolayer systems are explored: (1) the pattern in a model monolayer consisting of micron-size, surface-bound particles is visualized to show that the particles are concentrated into isolated regions of converging flow with high shear, and (2) Brewster angle microscopy of a Langmuir monolayer (vitamin K1) shows not only that the monolayer is patterned at the macroscopic scale but also that the localized high-shear flow further patterns the monolayer at the mesoscale.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号