首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Shape Dimension and Intrinsic Metric from Samples of Manifolds
Authors:Email author" target="_blank">Joachim?GiesenEmail author  Email author" target="_blank">Uli?WagnerEmail author
Institution:(1) Institut für Theoretische Informatik, ETH Zürich, CH-8092 Zürich, Switzerland
Abstract:We introduce the adaptive neighborhood graph as a data structure for modeling a smooth manifold M embedded in some Euclidean space Rd. We assume that M is known to us only through a finite sample P \subset M, as is often the case in applications. The adaptive neighborhood graph is a geometric graph on P. Its complexity is at most \min{2^{O(k)n, n2}, where n = |P| and k = dim M, as opposed to the n\lceil d/2 \rceil complexity of the Delaunay triangulation, which is often used to model manifolds. We prove that we can correctly infer the connected components and the dimension of M from the adaptive neighborhood graph provided a certain standard sampling condition is fulfilled. The running time of the dimension detection algorithm is d2O(k^{7} log k) for each connected component of M. If the dimension is considered constant, this is a constant-time operation, and the adaptive neighborhood graph is of linear size. Moreover, the exponential dependence of the constants is only on the intrinsic dimension k, not on the ambient dimension d. This is of particular interest if the co-dimension is high, i.e., if k is much smaller than d, as is the case in many applications. The adaptive neighborhood graph also allows us to approximate the geodesic distances between the points in P.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号