首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Both core- and shell-cross-linked nanogels: photoinduced size change, intraparticle LCST, and interparticle UCST thermal behaviors
Authors:He Jie  Yan Bin  Tremblay Luc  Zhao Yue
Institution:De?partement de chimie, Universite? de Sherbrooke, Sherbrooke, Que?bec, Canada J1K 2R1.
Abstract:New thermal- and photoresponsive core-shell nanogel particles were obtained from self-assembly in aqueous solution of a double-hydrophilic block copolymer (DHBCP) of which the two blocks could be photo-cross-linked via the reversible photodimerization and photocleavage of coumarin moieties. The diblock copolymer, consisting of polyN,N-dimethylacrylamide-co-4-methyl-7-(methacryloyl)oxyethyloxy]coumarin] and polyN-isopropylacrylamide-co-4-methyl-7-(methacryloyl)oxyethyloxy]coumarin] (P(DMA-co-CMA)-b-P(NIPAM-co-CMA)), was synthesized by using reversible addition-fragmentation chain transfer (RAFT) polymerization. At T > LCST of the P(NIPAM-co-CMA) block, core-shell micelles were formed and UV light irradiation at λ > 310 nm resulted in cross-linking of both the micelle core of P(NIPAM-co-CMA) and the micelle shell of P(DMA-co-CMA); subsequent cooling of the solution to T < LCST gave rise to water-soluble, swollen nanogel particles. Upon UV light irradiation at λ < 260 nm, the decrease of cross-linking density could increase the swelling of nanogel particles by ~23% in diameter. By alternating irradiation with the different wavelengths, the average hydrodynamic diameter of nanogel particles was tunable between ~58 and ~47 nm. Interestingly, upon further cooling of the solution, aggregation occurred for nanogel particles with a moderate cross-linking density (10%-40% dimerization of coumarin moieties). Therefore, such core- and shell-cross-linked nanogel could display both "intraparticle" LCST (solubility of polymer chains forming the core) and "interparticle" UCST (solubility of particles). The possible mechanism and the effect of dimerization degree on the UCST behavior were discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号