首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Inhibition of CO oxidation on RuO2(110) by adsorbed H2O molecules
Authors:Paulus U A  Wang Y  Kim S H  Geng P  Wintterlin J  Jacobi K  Ertl G
Institution:Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany.
Abstract:Catalytic CO oxidation on the RuO(2)(110) surface was studied at 300 K by scanning tunneling microscopy (STM), high-resolution electron-energy-loss spectroscopy (HREELS), and thermal desorption spectroscopy (TDS). Upon repeatedly exposing the surface to several 10 L of CO and O(2) at 300 K, STM shows that unreactive features accumulate with each CO and O(2) titration run. HREELS and TDS show formation of increasing amounts of H(2)O, retarded formation of O-cus atoms and incomplete removal of CO-bridge molecules during O(2) dosing, and a changing ratio of single- and double-bonded CO-bridge molecules. It is concluded that H(2)O (presumably from the residual gas) is accumulating at the Ru-cus sites thus blocking them, so that the dissociative adsorption of oxygen is prevented and the CO oxidation reaction is suppressed. Some 10% CO- bridge remains on the surface even during oxygen exposure. Consistent with this interpretation, deactivation of the surface is suppressed at 350 K, at the onset of H(2)O desorption.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号