首页 | 本学科首页   官方微博 | 高级检索  
     


A numerical evaluation of solvers for the periodic Riccati differential equation
Authors:Sergei Gusev  Stefan Johansson  Bo Kågström  Anton Shiriaev  Andras Varga
Affiliation:(1) Research School of Information Sciences and Engineering, the Australian National University, Canberra, ACT, 0200, Australia;(2) National ICT Australia, Tower A, 7 London Circuit, Canberra, ACT, 2601, Australia
Abstract:
Efficient and accurate structure exploiting numerical methods for solving the periodic Riccati differential equation (PRDE) are addressed. Such methods are essential, for example, to design periodic feedback controllers for periodic control systems. Three recently proposed methods for solving the PRDE are presented and evaluated on challenging periodic linear artificial systems with known solutions and applied to the stabilization of periodic motions of mechanical systems. The first two methods are of the type multiple shooting and rely on computing the stable invariant subspace of an associated Hamiltonian system. The stable subspace is determined using either algorithms for computing an ordered periodic real Schur form of a cyclic matrix sequence, or a recently proposed method which implicitly constructs a stable deflating subspace from an associated lifted pencil. The third method reformulates the PRDE as a convex optimization problem where the stabilizing solution is approximated by its truncated Fourier series. As known, this reformulation leads to a semidefinite programming problem with linear matrix inequality constraints admitting an effective numerical realization. The numerical evaluation of the PRDE methods, with focus on the number of states (n) and the length of the period (T) of the periodic systems considered, includes both quantitative and qualitative results.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号