首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Solvent effects on electron-driven proton-transfer processes: adenine-thymine base pairs
Authors:Dargiewicz Monika  Biczysko Malgorzata  Improta Roberto  Barone Vincenzo
Institution:Dipartimento di Chimica Paolo Corradini and INSTM Village, Università di Napoli Federico II, Complesso Univ. Monte S. Angelo, via Cintia, 80126 Napoli, Italy.
Abstract:Time-Dependent Density Functional Theory (TD-DFT) computations, with M05-2X and PBE0 functionals, have been employed for a detailed study of the Electron-Driven Proton-Transfer (PT) processes in an Adenine-Thymine Watson-Crick Base Pair in the gas phase and in solution, with the bulk solvent described by the polarizable continuum model. In the gas phase, TD-DFT computations predict that the Adenine → Thymine Charge Transfer (CT) excited state undergoes a barrierless PT reaction, in agreement with CC2 computations (S. Perun, A. Sobolewski, W. Domcke, J. Phys. Chem. A, 2006, 110, 9031.). The good agreement between the TD-DFT approach and CC2 results validates the former for the studies of excited state properties, excited state proton transfer reaction, and deactivation mechanisms in the DNA base pairs. Next, it is shown that inclusion of solvent effects significantly influences the possibility of both barrier-less excited state proton transfer and radiation-less deactivation through conical intersection with the ground state, affecting the energy of the CT excited state in the Franck-Condon region, the energy barrier associated to the PT process and the energy gap with the ground electronic state. These findings clearly indicate that environmental effects, with a special attention to proper treatment of dynamical solvation effects, have to be included for reliable computational analysis of photophysical and photochemical processes occurring in condensed phases.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号