首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ab initio studies of three-membered ring formation through intramolecular nucleophilic substitution
Authors:In-Suk Han  Chang Kon Kim  Chan Kyung Kim  Bon-Su Lee  Ikchoon Lee
Abstract:Three-membered ring (3MR) forming processes of X(SINGLE BOND)CH2(SINGLE BOND)CH2(SINGLE BOND)F and CH2(SINGLE BOND)C((SINGLE BOND)Y)(SINGLE BOND)CH2(SINGLE BOND)F (X(DOUBLE BOND)CH2, O, or S and Y(DOUBLE BOND)0 or S) through a gas phase neighboring group mechanism (SNi) are studied theoretically using the ab initio molecular orbital method with the 6–31+G* basis set. When electron correlation effects are considered, the activation (ΔG) and reaction energies (ΔG0) are lowered by ca. 10 kcal mol−1, indicating the importance of the electron correlation effect in these reactions. The contribution of entropy of activation (−TΔS) at 298 K to ΔG is very small, and the reactions are enthalpy controlled. The ΔG and ΔG0 values for these ring closure processes largely depend on the stabilities of the reactants and the heteroatom acting as a nucleophilic center. The Bell–Evans–Polanyi principle applies well to all these reaction series. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1773–1784, 1997
Keywords:three-membered ring formation  intramolecular nucleophilic substitution  ab initio molecular orbital method
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号