首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Viscoelastic properties of amorphous polymers. 5. A coupling model analysis of the thermorheological complexity of polyisobutylene in the glass-rubber softening dispersion
Authors:K L Ngai  D J Plazek  A K Rizos
Abstract:Isothermal data of high molecular weight polyisobutylene obtained by mechanical measurements with a spectral range over eight decades and additional photon correlation measurements have found that there are three distinct viscoelastic mechanisms in the glass-rubber transition zone. Theoretical considerations have helped to identify these three mechanisms to originate separately from local segmental (α) modes, sub-Rouse (sR) modes, and Rouse (R) modes. The temperature dependences of the shift factors of these mechanisms, aT,α, aT,sR and aT,R, determined over a common temperature range are found to be all different. The differences in temperature dependences are explained quantitatively by the coupling model. The local segmental motion contributes to compliances ranging from the glassy compliance, Jg, up to 10−8.5 Pa−1. The sub-Rouse modes contribute in the compliance range, 10−8.5J(t) ≤ 10−7 Pa−1. The Rouse modes account for the compliances in the range of 10−7 Pa−1J(t)Jplateau, where Jplateau is the plateau compliance. The magnitudes of the bounds given here are only rough estimates. Shift factors, aT, obtained by time-temperature superpositioning of viscoelastic data taken in the softening transition over a limited experimental window are shown to be a combination of the three individual shifts factors, aT,α, aT,sR, and aT,R. Consequently, care must be exercised in interpreting or using the WLF equation that fits the shift factors of the entire softening dispersion, because the latter do not describe the temperature dependence of any one of the three viscoelastic mechanisms. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 599–614, 1997
Keywords:viscoeleasticity  thermorheological complexity  polyisobutylene  glass-rubber softening dispersion  WLF equation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号