首页 | 本学科首页   官方微博 | 高级检索  
     


Melt block copolymerization of ϵ-caprolactone and L-lactide
Authors:Peter J. A. In't Veld  Esther M. Velner  Peter Van De Witte  Jennie Hamhuis  Pieter J. Dijkstra  Jan Feijen
Abstract:AB block copolymers of ϵ-caprolactone and (L )-lactide could be prepared by ring-opening polymerization in the melt at 110°C using stannous octoate as a catalyst and ethanol as an initiator provided ϵ-caprolactone was polymerized first. Ethanol initiated the polymerization of ϵ-caprolactone producing a polymer with ϵ-caprolactone derived hydroxyl end groups which after addition of L -lactide in the second step of the polymerization initiated the ring-opening copolymerization of L -lactide. The number-average molecular weights of the poly(ϵ-caprolactone) blocks varied from 1.5 to 5.2 × 103, while those of the poly(L -lactide) blocks ranged from 17.4 to 49.7 × 103. The polydispersities of the block copolymers varied from 1.16 to 1.27. The number-average molecular weights of the polymers were controlled by the monomer/hydroxyl group ratio, and were independent on the monomer/stannous octoate ratio within the range of experimental conditions studied. When L -lactide was polymerized first, followed by copolymerization of ϵ-caprolactone, random copolymers were obtained. The formation of random copolymers was attributed to the occurrence of transesterification reactions. These side reactions were caused by the ϵ-caprolactone derived hydroxyl end groups generated during the copolymerization of ϵ-caprolactone with pre-polymers of L -lactide. The polymerization proceeds through an ester alcoholysis reaction mechanism, in which the stannous octoate activated ester groups of the monomers react with hydroxyl groups. © 1997 John Wiley & Sons, Inc.
Keywords:block copolymers  ring-opening polymerization  ϵ  -caprolactone  L-lactide  stannous octoate
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号