Abstract: | The solution behaviors of equimolar mixtures of cationic-anionic surfactants have been studied by means of the dynamic light scattering technique and surface tension measurements. The surface activity and the micellization properties are different for systems of different hydrophobic chain length symmetry. For systems of lower symmetry (e.g., C6H13NC5H5Br-C12H25SO4Na mixture), the surface tension at cmc (γcmc) is rather high (above 30 mN m−1) and the mixtures form genuinely homogeneous micellar solutions above the cmc. For the systems of high symmetry (e.g., C8H17NC5H5Br-C8H17SO4Na mixture), γcmc is very low (about 24 mN m−1, near the value of pure hydrocarbon) and in the apparently homogeneous and clear mixtures slightly above cmc, the aggregates grow slowly and eventually form small droplets; as the concentration is further increased, all these solutions become turbid. We have proposed a new concept of conformation energy of aggregates to account for all these phenomena. Mixtures of octyltriethylammonium bromide and sodium octylsulfate form clear homogeneous micellar solutions in keeping with predictions based upon this concept. |