首页 | 本学科首页   官方微博 | 高级检索  
     


Control of photoinduced energy- and electron-transfer steps in zinc porphyrin-oligothiophene-fullerene linked triads with solvent polarity
Authors:Nakamura Takumi  Ikemoto Jun-Ya  Fujitsuka Mamoru  Araki Yasuyuki  Ito Osamu  Takimiya Kazuo  Aso Yoshio  Otsubo Tetsuo
Affiliation:Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, CREST (JST), Katahira, Sendai, Miyagi 980-8577, Japan.
Abstract:The dramatic changes of the lifetimes of the charge-separated (CS) states were confirmed in zinc porphyrin (ZnP)-oligothiophene (nT)-fullerene (C(60)) linked triads (ZnP-nT-C(60)) with the solvent polarity. After the selective excitation of the ZnP moiety of ZnP-nT-C(60), an energy transfer took place from the (1)ZnP moiety to the C(60) moiety, generating ZnP-nT-(1)C(60). In polar solvents, the CS process also took place directly via the (1)ZnP moiety, generating ZnP(*+)-nT-C(60)(*-), as well as the energy transfer to the C(60) moiety. After this energy transfer, an indirect CS process took place from the (1)C(60) moiety. In the less polar solvent anisole, the radical cation (hole) of ZnP(*+)-nT-C(60)(*-) shifted to the nT moiety; thus, the nT moiety behaves as a cation trapper, and the rates of the hole shift were evaluated to be in the order of 10(8) s(-1); then, the final CS states ZnP-nT(*+)-C(60)(*-) were lasting for 6-7 mus. In the medium polar solvent o-dichlorobenzene (o-DCB), ZnP-nT(*+)-C(60)(*-) and ZnP(*+)-nT-C(60)(*-) were present as an equilibrium, because both states have almost the same thermodynamic stability. This equilibrium resulted in quite long lifetimes of the CS states (450-910 mus) in o-DCB. In the more polar benzonitrile, the generation of ZnP-nT(*+)-C(60)(*-) was confirmed with apparent short lifetimes (0.6-0.8 mus), which can be explained by the fast hole shift to more stable ZnP(*+)-nT-C(60)(*-) followed by the faster charge recombination. It was revealed that the relation between the energy levels of two CS states, which strongly depend on the solvent polarity, causes dramatic changes of the lifetimes of the CS states in ZnP-nT-C(60); that is, the most appropriate solvents for the long-lived CS state are intermediately polar solvents such as o-DCB. Compared with our previous data for H(2)P-nT-C(60), in which H(2)P is free-base porphyrin, the lifetimes of the CS states of ZnP-nT-C(60) are approximately 30 times longer than those in o-DCB.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号