Ligand effects in the syntheses and structures of novel heteroleptic and homoleptic bismuth(III) formamidinate complexes |
| |
Authors: | Brym Markus Forsyth Craig M Jones Cameron Junk Peter C Rose Richard P Stasch Andreas Turner David R |
| |
Affiliation: | School of Chemistry, Monash University, Clayton, 3800, Australia. |
| |
Abstract: | Metathesis reactions of the alkali metal formamidinates M(RNC(H)NR), M = Li or K; R = C(6)H(3)-2,6-Pr(i)(2) (L(1)), C(6)H(3)-2,6-Et(2) (L(2)); C(6)H(2)-2,4,6-Me(3) (L(3)), C(6)H(3)-2,6-Me(2) (L(4)) or C(6)H(4)-2-Ph (L(5)), with BiX(3) (X = Cl or Br) gave a range of bismuth(iii) formamidinate complexes [Bi(L)Br(micro-Br)(thf)](2) (L = L(1), L(4)), [{Bi(L(1))Cl(2)(thf)}(2)Bi(L(1))Cl(2)], [Bi(L)(2)X] (L = L(2), L(5), X = Br; L = L(1), X = Cl), and [Bi(L)(3)] (L = L(2), L(3)). An analogous organometallic complex Bi(L(1))(2)Bu(n) was also isolated as a side product in one instance. Structural characterisation of the di-halide complexes show symmetrical dimers for X = Br, with two bromide bridges, and a coordinated thf molecule on each Bi atom, whereas for X = Cl a thf deficient species was crystallised, and has a weakly associated trinuclear array with two coordinated thf molecules per three Bi atoms. Complexes of the form Bi(L)(2)X (X = Br, Cl, Bu(n)) and Bi(L)(3) all have monomeric structures but the Bi(L)(3) species show marked asymmetry of the formamidinate binding, suggesting that they have reached coordination saturation. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|