首页 | 本学科首页   官方微博 | 高级检索  
     


Parameter determination for thermodynamical models of the pseudoelastic behaviour of shape memory alloy by resistivity measurements and infrared thermography
Authors:C. Lexcellent  C. Rogueda  G. Bourbon
Affiliation:(1) Laboratoire de Mécanique Appliquée, UFR Sciences et Techniques, La Bouloie-Route de Gray, 25030 Besançon Cedex, France
Abstract:Two thermodynamical models of pseudoelastic behaviour of shape memory alloys have been formulated. The first corresponds to the ideal reversible case. The second takes into account the hysteresis loop characteristic of this shape memory alloys.Two totally independent techniques are used during a loading-unloading tensile test to determine the whole set of model parameters, namely resistivity and infrared thermography measurements. In the ideal case, there is no difficulty in identifying parameters.Infrared thermography measurements are well adapted for observing the phase transformation thermal effects.Notations agr 1 austenite 2 martensite - epsi(agr) Macroscopic infinitesimal strain tensor of phase agr - epsi(2)f Traceless strain tensor associated with the formation of martensite phase - epsi Macroscopic infiniesimal strain tensor - 
$$bar varepsilon $$
Macroscopic infinitesimal strain tensor deviator - epsif Trace epsi - 
$$varepsilon  = (bar varepsilon :bar varepsilon )^{1/2} $$
Equivalent strain - epsipe Macroscopic pseudoelastic strain tensor - x Distortion due to parent (austenite agr=1)rarrproduct (martensite agr=2) phase transformation (traceless symmetric second order tensor) - M Total mass of a system - M(agr) Total mass of phase agr - V Total volume of a system - V(agr) Total volume of phase agr - z=M(2)/M Weight fraction of martensite - 1-z=M(1)/M Weight fraction of austenite - u0*(agr) Specific internal energy of phase agr (agr=1,2) - s0*(agr) Specific internal entropy of phase agr - 
$$bar u_0 $$
Specific configurational energy - 
$$bar s_0 $$
Specific configurational entropy - pgr0f(T) ldquoDriving forcerdquo for temperature-induced martensitic transformation at stress free state (pgr0fT) = DeltaT*TDeltas*) - tau Kirchhoff stress tensor - 
$$bar tau $$
Kirchhoff stress tensor deviator - 
$$tau  = (bar tau  bar tau )^{1/2} $$
Equivalent stress - sgr Cauchy stress tensor - rgr Mass density - K Bulk moduli (K0=rgrK) - L Elastic moduli tensor (order 4) - E Young modulus - mgr Energetic shear (mgr0 = rgrmgr) - ngr Poisson coefficient - Mso(MFo) Martensite start (finish) temperature at stress free state - Aso(AFo) Austenite start (finish) temperature at stress free state - Cv Specific heat at constant volume - k Conductivity - gamma Pseudoelastic strain obtained in tensile test after complete phase transformation (ArarrM) (unidimensional test) - agr0 Thermal expansion tensor - r Resistivity - 1MPa 106N/m2 - phgr(agr) Specific free energy of phase agr - phgrn Specific free energy at non equilibrium (R model) - phgrneq Specific free energy at equilibrium (R model) - phgrnv Volumic part of phiveq - phiv Specific free energy at non equilibrium (RL model) - phivconf Specific coherency energy (RL model) - phivc Specific free energy at constrained equilibria (RL model) - phivit (T) Coherency term
$$(Phi _{it} (T) = bar u_0  - Tbar s_0 )$$
(RL model)
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号