首页 | 本学科首页   官方微博 | 高级检索  
     


Stabilizing Halogen-Bonded Complex between Metallic Anion and Iodide
Authors:Fei Ying  Xu Yuan  Xinxing Zhang  Jing Xie
Abstract:
Halogen bonds (XBs) between metal anions and halides have seldom been reported because metal anions are reactive for XB donors. The pyramidal-shaped Mn(CO)5 anion is a candidate metallic XB acceptor with a ligand-protected metal core that maintains the negative charge and an open site to accept XB donors. Herein, Mn(CO)5 is prepared by electrospray ionization, and its reaction with CH3I in gas phase is studied using mass spectrometry and density functional theory (DFT) calculation. The product observed experimentally at m/z = 337 is assigned as [IMn(CO)4(OCCH3)], which is formed by successive nucleophilic substitution and reductive elimination, instead of the halogen-bonded complex (XC) CH3−I···Mn(CO)5, because the I···Mn interaction is weak within XC and it could be a transient species. Inspiringly, DFT calculations predict that replacing CH3I with CF3I can strengthen the halogen bonding within the XC due to the electro-withdrawing ability of F. More importantly, in so doing, the nucleophilic substitution barrier can be raised significantly, ~30 kcal/mol, thus leaving the system trapping within the XC region. In brief, the combination of a passivating metal core and the introduction of an electro-withdrawing group to the halide can enable strong halogen bonding between metallic anion and iodide.
Keywords:halogen bond   metallic anion   nucleophilic substitution reaction   quantum chemistry calculation   reductive elimination
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号