首页 | 本学科首页   官方微博 | 高级检索  
     


All-Polymer Piezo-Composites for Scalable Energy Harvesting and Sensing Devices
Authors:George-Theodor Stiubianu  Adrian Bele  Alexandra Bargan  Violeta Otilia Potolinca  Mihai Asandulesa  Codrin Tugui  Vasile Tiron  Corneliu Hamciuc  Mihaela Dascalu  Maria Cazacu
Abstract:
Silicone elastomer composites with piezoelectric properties, conferred by incorporated polyimide copolymers, with pressure sensors similar to human skin and kinetic energy harvester capabilities, were developed as thin film (<100 micron thick) layered architecture. They are based on polymer materials which can be produced in industrial amounts and are scalable for large areas (m2). The piezoelectric properties of the tested materials were determined using a dynamic mode of piezoelectric force microscopy. These composite materials bring together polydimethylsiloxane polymers with customized poly(siloxane-imide) copolymers (2–20 wt% relative to siloxanes), with siloxane segments inserted into the structure to ensure the compatibility of the components. The morphology of the materials as free-standing films was studied by SEM and AFM, revealing separated phases for higher polyimide concentration (10, 20 wt%). The composites show dielectric behavior with a low loss (<10−1) and a relative permittivity superior (3–4) to pure siloxane within a 0.1–106 Hz range. The composite in the form of a thin film can generate up to 750 mV under contact with a 30 g steel ball dropped from 10 cm high. This capability to convert a pressure signal into a direct current for the tested device has potential for applications in self-powered sensors and kinetic energy-harvesting applications. Furthermore, the materials preserve the known electromechanical properties of pure polysiloxane, with lateral strain actuation values of up to 6.2% at 28.9 V/μm.
Keywords:polydimethylsiloxane   polyimide   electronic skin   hydrophobic films   piezoelectric properties   pressure sensor
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号