Elastic constants of uniaxial nematic liquid crystals: A comparison between theory and experiment |
| |
Authors: | Shri Singh |
| |
Affiliation: | a Department of Physics, Banaras Hindu University, Varanasi, India |
| |
Abstract: | Using the unified molecular theory developed in our earlier paper (1992, Phys. Rev. A, 45, 974) we study in detail the influence of molecular interactions on the fundamental elastic properties of uniaxial nematic liquid crystals composed of molecules of cylindrical symmetry. The expressions for the elastic moduli associated with 'splay', 'twist' and 'bend' modes of deformations are written in terms of order parameters characterizing the nature and amount of ordering in the phase and the structural parameters which involve the generalized spherical harmonic coefficients of the direct pair correlation function of an effective isotropic liquid. Numerical calculations are done for a model system, the molecules of which have prolate ellipsoid of revolution symmetry and interact via a pair potential having both repulsive and attractive parts. The repulsive interaction is represented by a repulsion between hard ellipsoids of revolution. The attractive potential is represented by the dispersion and electrostatic interactions. Results for the elastic constants are reported for a range of molecular length-width ratio, temperature, density and molecular parameters and are compared with the experimental values of p-azoxyanisole (PAA) and 4'-n-octyloxy-4-cyanobiphenyl (8OCB). It is found that the inclusion of electrostatic interactions reduces the values of the ratios K2/K1 and K3/K1. The absolute values of the elastic constants and their ratios are in good agreement with the experimental and computer simulation values. The temperature dependence of the elastic constants and their ratios is studied. It is observed that the twist elastic constant has a weak temperature dependence but a pronounced influence is observed on the bend moduli. We also observed a pronounced increase in the values of the twist and bend elastic constants on approaching the nematic-smectic A transition temperature. |
| |
Keywords: | |
本文献已被 InformaWorld 等数据库收录! |
|