首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spectroscopy,oxidation-reduction behaviour and DC conductivity of a vanadium-containing barium aluminoborate glass
Authors:A Paul  N Yee
Institution:Department of Ceramics, Glasses and Polymers, University of Sheffield, UK
Abstract:The vanadium(IV)-vanadium(V) equilibrium in a 37.5BaO, 5.0Al2O3, 57.5B2O3 mol% + X mol% V2O5 (where X = 0.25?32.5) glass system has been studied as functions of temperature, partial pressure of oxygen and total vanadium concentration of the melt. The vanadium(V)/vanadium(IV) ratio in the melt increased with increasing partial pressure of oxygen, lowering temperature of melting, and with increasing total vanadium content of the melt. With X ? 10, the vanadium(V)/vanadium(IV) ratio became almost independent of the total vanadium content of the melt.With this knowledge of oxidation-reduction behaviour, a series of glasses containing 2.8?32.5 mol% V2O5 (at about 4 mol% intervals) and having a constant vanadium(IV)/vanadium(V) ratio (0.17) were prepared. Density, electronic absorption spectrum (both d-d and charge transfer transitions), and ESR of these glasses were measured. Optical and ESR spectra of these glasses indicated the vanadium(IV) to be present as vanadyl ion, VO2+; g| decreased monotonically with increasing vanadium content of these glasses, whereas gβ remained unchanged. The charge transfer transition energy due to vanadium(V) decreased, and the extinction coefficient increased by orders of magnitude with increasing vanadium content of the glass; the most striking changes occurred at X ≈ 10 mol%. DC conductivity of these glasses was measured at different temperatures; a plot of log (?/T) versus 1/T produced straight lines. The slope of these lines remained almost constant (39 ± 1 kcal/mol) for the glasses containing up to about 10 mol% V2O5; with further increase of V2O5 the slope decreased sharply.It has been concluded that the abrupt changes in properties like partial molar volume of V2O5, charge transfer spectrum of vanadium(V), activation energy of polaron hopping — all of which occurred around X ≈ 10 mol% — is due to a major change in the nature of vanadate groups rather than vanadium(IV) in these glasses.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号