首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Aromaticity and antiaromaticity in 4-, 6-, 8-, and 10-membered conjugated hydrocarbon rings
Authors:Pierrefixe Simon C A H  Bickelhaupt F Matthias
Institution:Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Scheikundig Laboratorium der Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands.
Abstract:Recently, we presented a molecular orbital (MO) model of aromaticity that explains, in terms of simple orbital-overlap arguments, why benzene (C(6)H(6)) has a regular structure with delocalized double bonds whereas the geometry of 1,3-cyclobutadiene (C(4)H(4)) is distorted with localized double bonds. Here, we show that the same model and the same type of orbital-overlap arguments also account for the irregular and regular structures of 1,3,5,7-cyclooctatetraene (C(8)H(8)) and 1,3,5,7,9-cyclodecapentaene (C(10)H(10)), respectively. Our MO model is based on accurate Kohn-Sham DFT analyses of the bonding in C(4)H(4), C(6)H(6), C(8)H(8), and C(10)H(10) and how the bonding mechanism is affected if these molecules undergo geometrical deformations between regular, delocalized ring structures and distorted ones with localized double bonds. The propensity of the pi electrons is always to localize the double bonds, against the delocalizing force of the sigma electrons. Importantly, we show that the pi electrons nevertheless determine the localization (in C(4)H(4) and C(8)H(8)) or delocalization (in C(6)H(6) and C(10)H(10)) of the double bonds.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号