首页 | 本学科首页   官方微博 | 高级检索  
     

混合变异粒子群优化算法及其应用
引用本文:石建平,杨子义,刘鹏. 混合变异粒子群优化算法及其应用[J]. 数学的实践与认识, 2021, 0(1): 150-161
作者姓名:石建平  杨子义  刘鹏
作者单位:1.贵阳学院电子与通信工程学院;2.南昌大学机电工程学院;3.河北地质大学宝石与材料工艺学院
基金项目:贵阳市科技局-贵阳学院科研专项资金(GYU-KYZ(2019 2020)DT-07)。
摘    要:为改善粒子群优化算法在解决复杂优化问题时收敛质量不高的不足,提出了一种改进的粒子群优化算法,即混合变异粒子群优化算法(HMPSO).HMPSO算法采用了带有随机因子的惯性权重取值更新策略,降低了标准粒子群优化算法中由于粒子飞行速度过大而错过最优解的概率,从而加速了算法的收敛速度.此外,通过混合变异进化环节的引入,缓解了...

关 键 词:粒子群优化算法  变异  冗余机械臂  逆运动学

Hybrid Mutation Particle Swarm Optimization Algorithm and Its Application
SHI Jian-ping,YANG Zi-yi,LIU Peng. Hybrid Mutation Particle Swarm Optimization Algorithm and Its Application[J]. Mathematics in Practice and Theory, 2021, 0(1): 150-161
Authors:SHI Jian-ping  YANG Zi-yi  LIU Peng
Affiliation:(School of Electronic&Com m unication Engineering,Guiyang University,Guiyang 550005,China;School of Mechanical&Electrical Engineering,Nanchang University,Nanchang 330031,China;School of Gems and M aterials Technology,Hebei GEO University,Shijiazhuang 050031,China)
Abstract:In order to improve the poor convergence quality of particle swarm optimization algorithm in solving complex optimization problems,an improved particle swarm optimization algorithm is proposed,namely the hybrid mutation particle swarm optimization algorithm(HMPSO).An inertia weight value updating strategy with a random factor is adopted in HMPSO,which reduces the probability of particles missing the optimal solution due to excessive flying speed,thus the convergence speed of the algorithm can be accelerated.In addition,through the introduction of hybrid mutation evolution,the contradiction between diversity and convergence of the swarm in the evolution process is alleviated,and the global exploration and the local exploitation of the algorithm are effectively balanced.The effectiveness of the proposed algorithm are verified by using the classical benchmark functions and the inverse kinematics of the planar redundant manipulator.The experimental results show that compared with other algorithms,HMPSO has faster convergence speed,higher convergence accuracy,stronger convergence stability and lower computational cost.
Keywords:particle swarm optimization algorithm  mutation  redundant manipulator  inverse kinematics
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号