首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Regeneration of C4H10 dry reforming catalyst by nonthermal plasma
Authors:YS Mok  E Jwa  YJ Hyun
Institution:1. Department of Chemical and Biological Engineering, Jeju National University, Jeju 690-756, Republic of Korea;2. Korea Institute of Energy Research, Jeju 699-903, Republic of Korea
Abstract:Carbon deposition via coke formation is one of the critical problems causing catalyst deactivation during the reforming of hydrocarbons. An effort was made to regenerate the catalyst (Ni/γ-alumina) by oxidation methods. Two approaches were carried out for the regeneration of the deactivated catalyst. The first one involves the plasma treatment of the deactivated catalyst in the presence of dry air over a temperature range of 300~500 °C, while the second one only the thermal treatment in the same temperature range. The performance of the regenerated catalyst was evaluated in terms of C4H10 and CO2 conversions and the physicochemical characteristics were examined using a surface area analyzer, an elemental analyzer, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was observed that the carbon deposit (coke) on the catalyst was about 9.89 wt% after reforming C4H10 for 5 h at 540 °C. The simple thermal treatment at 400 °C reduced carbon content to 6.59 wt% whereas it was decreased to 3.25 wt% by the plasma and heat combination. The specific surface area was fully restored to the original state by the plasma-assisted regeneration at 500 °C. As far as the catalytic activity is concerned, the fresh and regenerated catalysts exhibited similar C4H10 and CO2 conversion efficiencies.
Keywords:dry reforming  coke formation  regeneration  plasma  catalyst
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号