首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Acoustic streaming in a rotating fluid
Authors:G Whitworth
Institution:Physics Department, University of Vermont, Burlington 05405.
Abstract:Acoustic streaming theory is derived that is applicable to a fluid that is slow moving in a reference frame that rotates with a constant angular velocity omega. A simplified streaming equation is obtained for the special case in which the acoustic angular frequency omega is large relative to omega, and the change in fluid density due to rotation alone is negligible. For this special case it is shown that the "driving force" for the acoustic streaming is independent of omega. Thus, if no acoustic streaming is present in a fluid system that is stationary, then no steady-state acoustic streaming is predicted for a similar system that rotates with constant angular velocity. For a system in which acoustic streaming is present, the flow behavior depends on the relative magnitudes of the Coriolis forces and the viscous forces. If the Ekman number is large (that is, the viscous force dominates) then the predicted flow is identical to that which would exist in a stationary system. If, on the other hand, the Ekman number is small then the Coriolis force dominates and the component of flow in the direction of the axis of rotation can be much smaller in the rotating system than in a similar system at rest.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号