首页 | 本学科首页   官方微博 | 高级检索  
     


Surface characterization of pre‐formed alginate fibres incorporated with a protein by a novel entrapment process
Abstract:
A novel physical entrapment process has been explored as an approach to surface incorporation of proteins within pre‐formed alginate fibres under mild conditions. Entrapment of the protein of choice was achieved by exposing the alginate fibres to a Na+‐rich NaCl/CaCl2 mixture solution, which caused the formation of a moderate dissociation layer into which the protein could diffuse. Subsequent addition of a large excess of multi‐valent cations led to the collapse of the surface and entrapment of the protein within the surface. Bovine serum albumin (BSA) was used as a model protein to investigate the effect of process parameters on the entrapment efficiency. Scanning electron microscopy revealed that there was an increase in the surface roughness and a slight increase in the average diameter of the fibres after protein entrapment. The presence of the protein at the surface of alginates after the entrapment process was confirmed by means of confocal laser‐scanning microscopy, X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). The ion exchanges at the surface were evident, as detected by XPS and ToF‐SIMS. It was found that under fixed pre‐swelling conditions, the entrapment efficiency increased with increasing treatment time and, particularly, with protein concentration in the exposure solution. Copyright © 2005 John Wiley & Sons, Ltd.
Keywords:surface modification  alginate fibres  XPS  ToF‐SIMS  bovine serum albumin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号