首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Challenge of synthetic cellulose
Authors:Shiro Kobayashi
Abstract:This article focuses on why and how the chemical synthesis of cellulose was accomplished. The synthesis of cellulose was an important, challenging problem for half a century in polymer chemistry. For the synthesis, a new method of enzymatic polymerization was developed. A monomer of β‐D ‐cellobiosyl fluoride (β‐CF) was designed and subjected to cellulase catalysis, which led to synthetic cellulose for the first time. Cellulase is a hydrolysis enzyme of cellulose; cellulase, inherently catalyzing the bond cleavage of cellulose in vivo, catalyzes the bond formation via the polycondensation of β‐CF in vitro. It is thought that the polymerization and hydrolysis involve a common intermediate (transition state). This view led us to a new concept, a transition‐state analogue substrate, for the design of the monomer. The preparation of cellulase proteins with biotechnology revealed the enzymatic catalytic functions in the hydrolysis and polymerization to cellulose. High‐order molecular structures were in situ formed and observed as fibrils (cellulose I) and spherulites (cellulose II). In situ small‐angle neutron scattering measurements suggested a fractal surface formation of a synthetic cellulose assembly. The principle of cellulose synthesis was extended to the synthesis of other natural polysaccharides, such as xylan and amylose, and unnatural polysaccharides. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 693–710, 2005
Keywords:biotechnologically prepared cellulase  catalysis  cellulase  enzymatic polymerization  high‐order molecular structure  polysaccharides  small‐angle neutron scattering measurements  spherulites  synthetic cellulose  transition‐state analogue substrate
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号