首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synergistic effect of chitosan derivative and DOPO for simultaneous improvement of flame retardancy and mechanical property of epoxy resin
Authors:Wang  Junjie  Yu  Xuejun  Dai  Shengsong  Wang  Xinyu  Pan  Zhiquan  Zhou  Hong
Institution:1.College of Chemistry and Environmental Technology, Wuhan Institute of Technology, Wuhan, China
;2.National Phosphorus Product Quality Supervision and Inspection Center, Three Gorges Public Inspection and Testing Center, Yichang, China
;
Abstract:

In this work, the effects of a chitosan-based derivative (CSA), DOPO (9, 10-dihydro-9-oxa-10- phosphaphenanthreene-10-oxide) and CSA-DOPO additives on the flammable properties of EP (epoxy resin) composites were systematically studied, where CSA was synthesized by a facile condensation between chitosan (CS) and 9-anthralaldehyde. The mass ratio of CS and 9-anthralaldehyde in CSA was determined by elemental analysis and theoretical calculation. Under the 8% addition in EP, EP/2.66%/5.34%DOPO sample was the only one passing the UL-94 V-0 rating and exhibiting the highest LOI value of 36.4%. The cone calorimeter test (CC) showed that the total smoke emission value and the peak heat release rate of the EP/2.66%/5.34%DOPO decreased by 36.0% and 61.9%, and the residual char amount increased by 151%, respectively, when compared with EP. Moreover, the incorporation of CSA/DOPO effectively improved the flexural strength by 52.3%. According to the results obtained from Py-GC/MS analyses for EP and EP/2.66%CSA/5.34%DOPO samples, together with Raman spectra, XPS (X-ray photoelectron spectra) for their char residues, and the real time FTIR (Fourier-transform infrared) spectra at different pyrolysis temperatures and cone calorimeters, it was proposed that CSA/DOPO played roles in both gaseous and condensed phases, and the synergistic effect of CSA and DOPO significantly improved the flame retardancy and mechanical strength of EP.

Graphical abstract
 loading=
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号