首页 | 本学科首页   官方微博 | 高级检索  
     


Key Factors for Simultaneous Improvements of Performance and Durability of Core‐Shell Pt3Ni/Carbon Electrocatalysts Toward Superior Polymer Electrolyte Fuel Cell
Authors:Xiao Zhao  Shinobu Takao  Takuma Kaneko  Yasuhiro Iwasawa
Abstract:It remains a big challenge to remarkably improve both oxygen reduction reaction (ORR) activity and long‐term durability of Pt?M bimetal electrocatalysts simultaneously in the harsh cathode environment toward widespread commercialization of polymer electrolyte fuel cells (PEFC). In this account we found double‐promotional effects of carbon micro coil (CMC) support on ORR performance and durability of octahedral Pt3Ni nanoparticles (Oh Pt3Ni/CMC). The Oh Pt3Ni/CMC displayed remarkable improvements of mass activity (MA; 13.6 and 34.1 times) and surface specific activity (SA; 31.3 and 37.0 times) compared to those of benchmark Pt/C (TEC10E20E) and Pt/C (TEC10E50E‐HT), respectively. Notably, the Oh Pt3Ni/CMC revealed a negligible MA loss after 50,000 triangular‐wave 1.0–1.5 VRHE (startup/shutdown) load cycles, contrasted to MA losses of 40 % (TEC10E20E) and 21.5 % (TEC10E50E‐HT) by only 10,000 load cycles. It was also found that the SA increased exponentially with the decrease in the CO stripping peak potential in a series of Pt?M/carbon (M: Ni and Co), which predicts a maximum SA at the curve asymptote. Key factors for simultaneous improvements of performance and durability of core‐shell Pt3Ni/carbon electrocatalysts toward superior PEFC is also discussed.
Keywords:Concave octahedral Pt3Ni on carbon micro-coil  Oxygen reduction reaction electrocatalyst  Key factors of high performance and durability  STEM/EDS and in   situ XAFS
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号