首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Low temperature adsorption and site-conversion process of CO on the Ni(111) surface
Authors:Atsushi Beniya  Noritake Isomura  Hirohito Hirata  Yoshihide Watanabe
Institution:1. Toyota Central R&D Labs., Inc., 41‐1 Yokomichi, Nagakute, Aichi 480‐1192, Japan;2. Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410‐1193, Japan
Abstract:Low-temperature (25 K) adsorption states and the site conversion of adsorbed CO between the ontop and the hollow sites on Ni(111) were studied by means of temperature programmed desorption and infrared reflection absorption spectroscopy. The activation energy and pre-exponential factor of desorption were estimated to be 1.2 eV and 2.6 × 1013 s? 1, respectively, in the limit of zero coverage. At low coverage, CO molecules preferentially adsorbed at the hollow sites below 100 K. With increasing temperature, the ontop sites were also occupied. Using a van't Hoff plot, the enthalpy and the entropy differences between the hollow and ontop CO were estimated to be 36 meV and 0.043 meV K? 1, respectively, and the vibrational entropy difference was estimated to be 0.085 meV K? 1. The positive entropy difference was the result of the low-energy frustrated translational mode of the ontop CO, which was estimated to be 4.6 ± 0.3 meV. With the harmonic approximation, the upper limit of the activation energy of site hopping from ontop sites to hollow sites was estimated to be 61 meV. In addition, it was suggested that the activation energy of hollow-to-hollow site hopping via a bridge site was less than 37 meV.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号