首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The effect of polymers on the phase behavior of balanced microemulsions: diblock-copolymer and comb-polymers
Authors:Markus Nilsson  Olle Söderman  Ingegärd Johansson
Institution:(1) Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, 22100 Lund, Sweden;(2) Akzo Nobel Surface Chemistry AB, 444 85 Stenungsund, Sweden
Abstract:The effect of some amphipilic diblock-copolymers and comb-polymers on a balanced Winsor III microemulsion system is investigated with the quaternary system n-octyl-β-d-glucoside/1-octanol/n-octane/D2O as basis system. The diblock-copolymers are polyethyleneoxide-co-polydodecenoxide (PEO x PEDODO y ) and polyethyleneoxide-co-polybutyleneoxide (PEO x PEBU y ), constituted of a straight chain hydrophilic part and a bulky hydrophobic part. Addition of the diblock-copolymer leads to an enhancement of the swelling of the middle phase by uptake of water and oil; a maximum boosting factor of 6 was obtained for PEO111PEDODO25. Nuclear magnetic resonance diffusometry yields the self-diffusion coefficients of all the components in the system. The diffusion experiments provide information on how the microstructure of the bicontinuous microemulsion changes upon addition of the polymers. The reduced self-diffusion coefficients of water and oil are sensitive to the type of polymer that is incorporated in the film. For the diblock-copolymers, as mainly used here, the reduced self-diffusion coefficient of oil and water will respond to how the polymer bends the film. When the film bends away from water, the reduced self-diffusion of the water will increase, whereas the oil diffusion will decrease due to the film acting as a barrier, hindering free diffusion. The self-diffusion coefficient of the polymer and surfactant are similar in magnitude and both decrease slightly with increasing polymer concentration.
Keywords:Bicontinuous microemulsion  Swelling of microemulsion  Diblock-copolymer  Efficiency boosting                  1H self-diffusion NMR
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号