首页 | 本学科首页   官方微博 | 高级检索  
     检索      

金红石高温高压相变的Raman光谱特征
引用本文:肖万生,张红,谭大勇,翁克难,李延春,罗崇举,刘景,谢鸿森.金红石高温高压相变的Raman光谱特征[J].光谱学与光谱分析,2007,27(7):1340-1343.
作者姓名:肖万生  张红  谭大勇  翁克难  李延春  罗崇举  刘景  谢鸿森
作者单位:1. 中国科学院广州地球化学研究所,广东,广州,510640
2. 中国科学院高能物理研究所,北京,100049
3. 中国科学院地球化学研究所,贵州,贵阳,550002
基金项目:中国科学院知识创新工程项目 , 国家自然科学基金
摘    要:以Ar作压力介质,在准静水压力条件下,利用激光加热DAC技术和显微Raman光谱原位测试技术,在0~35 GPa压力范围开展金红石的高温高压相变研究.在室温条件下,金红石结构TiO2于13.4 GPa开始转变成斜锆石相,于21 GPa时转变完全,并直到35 GPa时斜锆石相稳定存在.在压力分别为29.4和35.0 GPa时,用YAG激光器发出的波长为1.064μm的红外激光束扫描加热样品,TiO2斜锆石高压相转变成另一Pbca结构高压相.卸压时,Pbca相于26.3 GPa时转变成斜锆石相.斜锆石相转变成Pbca相需要加热才能发生,而卸压时却在较小的压力区间即迅速转变完全,两相转变压力边界在28 GPa左右.进一步卸压,斜锆石相直到11 GPa仍稳定,在7.6 GPa时斜锆石相与α-PbO2相两相共存,5 GPa时完全转变成α-PbO2相,并直到常压该相以亚稳定态存在.

关 键 词:金红石  高温高压相变  Raman光谱  斜锆石相  Pbca相  α-PbO2相
文章编号:1000-0593(2007)07-1340-04
修稿时间:2006-03-092006-07-24

Raman Characterization of Rutile Phase Transitions under High-Pressure and High-Temperature
XIAO Wan-sheng,ZHANG Hong,TAN Da-yong,WENG Ke-nan,LI Yan-chun,LUO Chong-ju,LIU Jing,XIE Hong-sen.Raman Characterization of Rutile Phase Transitions under High-Pressure and High-Temperature[J].Spectroscopy and Spectral Analysis,2007,27(7):1340-1343.
Authors:XIAO Wan-sheng  ZHANG Hong  TAN Da-yong  WENG Ke-nan  LI Yan-chun  LUO Chong-ju  LIU Jing  XIE Hong-sen
Institution:1. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China ;2. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; 3. Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
Abstract:The pressure-induced phase transition of rutile-structured TiO2 was investigated by in-situ Raman spectrum method in a laser-heated diamond anvil cell (DAC). The experiment was conducted at 35 GPa under quasihydrostatic conditions using argon as medium. At room temperature, the rutile-type TiO2 begins to transform to baddeleyite-type phase at 13.4 GPa and completes at 21 GPa, and this new high-pressure structure retains up to 35 GPa, the upmost pressure used in this study. At the pressure of 29.4 GPa the sample of baddeleyite-type TiO2 was heated by an YAG laser to about 1 000-1500 degrees C, and then the baddeleyite phase transformed to a Pbca phase. The Pbca phase was heated again at 35.0 GPa and it was still stable. The sample then began to be decompressed, and the Pbca phase of TiO2 transformed to baddeleyite structure at 26.3 GPa, which stayed stable to 11.4 GPa. The formation of Pbca phase from baddeleyite phase needs the condition of high temperature, it transforms back to badde-leyite structure completely at pressure of a little below that on its formation, which suggests the boundary of the two phases can be determined at about 28 GPa. At 7. 6 GPa, and the Raman spectrum shows the characteristics of the mixture of two phases of baddeleyite-type and alpha-PbO2-type, which indicates that the baddeleyite phase transforms to alpha-PbO2 phase at about 7 GPa. The alpha-PbO2-type TiO2 is metastable under ambient condition.
Keywords:
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号