首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Surface modification of an ethylene-acrylic acid copolymer film: grafting amine-terminated linear and branched architectures
Authors:Janorkar Amol V  Luo Ning  Hirt Douglas E
Institution:Department of Chemical Engineering and Center for Advanced Engineering Fibers & Films, Clemson University, Clemson, South Carolina 29634-0909, USA.
Abstract:Polymer films can be tailored for a specific application by modifying their surface properties. In this study, linear and branched architectures were grafted to ethylene-acrylic acid (EAA) copolymer films using the so-called grafting from approach. Dicyclohexylcarbodiimide was used to activate the carboxylic acid functionality on the surface of the EAA copolymer film before reacting it with selected di- and tri-amine compounds. The carboxylic acid functionality was subsequently regenerated by reacting the amine-grafted film with succinic anhydride. These reaction steps were then repeated to create the linear and branched architectures on the EAA film surface. The film surface resulting from each reaction step was analyzed using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and contact angle measurements. A systematic analysis of the ATR-FTIR results was performed to estimate the average conversion of the reaction schemes and to explain the observed contact angle results. A significant reduction in water contact angle for the EAA film grafted with a branched architecture was observed. The EAA film grafted with a linear architecture showed a marginal reduction in water contact angle when ethanol was used as a solvent for ethylenediamine. When the solvent for ethylenediamine was changed to water, the contact angle decreased noticeably. However, analysis of control films showed that the reduction in the contact angles was due to the solvent treatment. In the case of branched architectures, such reduction in contact angle due to the solvent treatment was not observed. Several control experiments were performed to ensure that the reduction in the contact angles was in fact due to the grafted species and not due to exposure to various solvents used in the reaction scheme.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号