首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reaction pathways and excited states in H(2)O(2)+OH-->HO(2)+H(2)O: a new ab initio investigation
Authors:Ginovska Bojana  Camaioni Donald M  Dupuis Michel
Institution:School of Electrical Engineering and Computer Science, Washington State University Tri-Cities, Richland, Washington 99354, USA.
Abstract:The mechanism of the hydrogen abstraction reaction H(2)O(2)+OH-->HO(2)+H(2)O in gas phase was revisited using density functional theory and other highly correlated wave function theories. We located two pathways for the reaction, both going through the same intermediate complex OH-H(2)O(2), but via two distinct transition state structures that differ by the orientation of the hydroxyl hydrogen relative to the incipient hydroperoxy hydrogen. The first two excited states were calculated for selected points on the pathways. An avoided crossing between the two excited states was found on the product side of the barrier to H transfer on the ground state surface, near the transition states. We report on the calculation of the rate of the reaction in the gas phase for temperatures in the range of 250-500 K. The findings suggest that the strong temperature dependence of the rate at high temperatures is due to reaction on the low-lying excited state surface over a barrier that is much larger than on the ground state surface.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号