首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of electrochemical and plasma treatments on carbon fibre surfaces
Authors:Carol Jones
Institution:Department of Materials Science and Engineering, Liverpool University, PO Box 147, Liverpool L69 3BX, UK
Abstract:This paper summarizes the chemical changes induced on carbon fibre surfaces (examined by X-ray photoelectron spectroscopy, XPS) by a variety of electrochemical treatment in aqueous electrolytes together with the improvements in fibre/resin bonding in the corresponding composite materials. It was found that there was no correlation between the amount of chemical functionality introduced onto the fibre surface and the fibre/resin bond strength, i.e. chemical bonding does not play a major role in fibre resin adhesion. This does not rule out the possibility of chemical bonding between the fibre and resin—it simply implies that it is not the governing factor. It is suggested that the immediate surface concentration of chemical groups is too low to make a significant contribution. To tailor interfacial properties it would be desirable to promote chemical bonding between fibre and matrix. The use of a specially designed plasma treatment cell has led to an increase in the surface concentration of chemical groups ( C OH, hydroxyl) that have the potential to react chemically with the resin. By exploiting grazing angle data taken from XPS analysis, it is shown that changes in the chemical nature of the fibres only occurs in the outermost layers, whereas the electrochemical reaction proceeds well into the fibre sublayers. Selective introduction of nitrogen-containing functionality (such as amines,  NH2) has been achieved. The reactivity towards a particular plasma is shown to be largely dependent on the structure of the fibre surface. The number of C/N groups produced on higher modulus fibres was undesirably low. Their concentration was increased by biasing the fibres to a negative potential (10–30 V) during plasma exposure.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号