首页 | 本学科首页   官方微博 | 高级检索  
     检索      

对Cu(111)表面吸附的单个苉分子的分子轨道进行成像:一个实验与理论相结合的研究
引用本文:周春生,单欢,李斌,赵爱迪.对Cu(111)表面吸附的单个苉分子的分子轨道进行成像:一个实验与理论相结合的研究[J].化学物理学报,2017,30(1):29-35.
作者姓名:周春生  单欢  李斌  赵爱迪
作者单位:中国科学技术大学合肥微尺度物质科学国家实验室(筹)与量子科技前沿协同创新中心, 合肥 230026;中国科学技术大学物理系, 合肥 230026,中国科学技术大学合肥微尺度物质科学国家实验室(筹)与量子科技前沿协同创新中心, 合肥 230026,中国科学技术大学合肥微尺度物质科学国家实验室(筹)与量子科技前沿协同创新中心, 合肥 230026,中国科学技术大学合肥微尺度物质科学国家实验室(筹)与量子科技前沿协同创新中心, 合肥 230026
基金项目:This work was supported by the National Basic Research Program of China (No.2011CB921400),the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (No.XDB01020100),the Key Research Program of the Chinese Academy of Sciences (No.KJCX2-EWJ02),the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No.2011322),and the National Natural Science Foundation of China (No.21473174,No.21273210,and No.51132007).
摘    要:结合扫描隧道显微学测量和密度泛函理论计算研究了直接吸附在Cu(111)表面的单个苉分子的电子结构性质.在低覆盖度下,苉分子表现出了单分散的吸附行为,利用dI/dV谱和图像可以辨别出吸附的单个苉分子在-1.2 V附近的最高占据态和1.6 V附近的最低未占据态.此外,还可以观测到苉分子未占据态的dI/dV信号对采谱位置具有很强的依赖性.第一性原理计算很好地模拟了这些实验结果,并且将它们归因于分子-衬底相互作用引起的苉分子不同分子轨道之间的混合态的能量和空间分布.该工作提供了吸附在金属衬底表面的苉分子的局域电子结构信息,将促进对单分子器件中电子输运性质对分子-金属电极耦合的依赖性的理解.

关 键 词:扫描隧道显微学  苉分子  分子轨道  密度泛函理论
收稿时间:2016/6/8 0:00:00
修稿时间:2016/8/4 0:00:00

Imaging Molecular Orbitals of Single Picene Molecules Adsorbed on Cu(111) Surface: a Combined Experimental and Theoretical Study
Chun-sheng Zhou,Huan Shan,Bin Li and Ai-di Zhao.Imaging Molecular Orbitals of Single Picene Molecules Adsorbed on Cu(111) Surface: a Combined Experimental and Theoretical Study[J].Chinese Journal of Chemical Physics,2017,30(1):29-35.
Authors:Chun-sheng Zhou  Huan Shan  Bin Li and Ai-di Zhao
Institution:Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;Department of Physics, University of Science and Technology of China, Hefei 230026, China,Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China,Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China and Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract:Picene, which attracts the great interest of researchers, not only can be used to fabricate thin film transistors with high hole mobilities, but also is the parent material of a new type organic superconductor. Here, we investigate the electronic properties of individual picene molecules directly adsorbed on Cu(111) surface by a combination of experimental scanning tunneling microscopy/spectroscopy measurements and theoretical calculations based on the density functional theory. At low coverage, the picene molecules exhibit mono-dispersed adsorption behavior with the benzene ring planes parallel to the surface. The highest occupied state around-1.2 V and the lowest unoccupied state around 1.6 V with an obvious energy gap of the singly adsorbed picene molecule are identified by the dI/dV spectra and maps. In addition, we observe the strong dependence of the dI/dV signal of the unoccupied states on the intramolecular positions. Our first-principles calculations reproduce the above experimental results and interpret them as a specific molecule-substrate interaction and energy/spatial distributions of hybrid states mainly derived from different molecular orbitals of picene with some intermixing between them. This work provides direct information on the local electronic structure of individual picene on a metallic substrate and will facilitate the understanding the dependence of electron transport properties on the coupling between molecules and metal electrodes in single-molecule devices.
Keywords:Scanning tunneling microscopy  Picene  Molecular orbitals  Density functional theory
点击此处可从《化学物理学报》浏览原始摘要信息
点击此处可从《化学物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号