首页 | 本学科首页   官方微博 | 高级检索  
     


Growth of carbon nanotubes on metal nanoparticles: a microscopic mechanism from ab initio molecular dynamics simulations
Authors:Raty Jean-Yves  Gygi François  Galli Giulia
Affiliation:Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550, USA.
Abstract:We report on ab initio molecular dynamics simulations of the early stages of single-walled carbon nanotube (SWCNT) growth on metal nanoparticles. Our results show that a sp2 bonded cap is formed on an iron catalyst, following the diffusion of C atoms from hydrocarbon precursors on the nanoparticle surface. The weak adhesion between the cap and iron enables the graphene sheet to "float" on the curved surface, as additional C atoms covalently bonded to the catalyst "hold" the tube walls. Hence the SWCNT grows capped. At the nanoscale, we did not observe any tendency of C atoms to penetrate inside the catalyst, consistent with total energy calculations showing that alloying of Fe and C is very unlikely for 1 nm particles. Root growth was observed on Fe but not on Au, consistent with experiment.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号