首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Incubation in cyclohexene decomposition at high temperatures
Authors:Jichun Shi  John R Barker
Abstract:A detailed master equation simulation has been carried out for the thermal unimolecular decomposition of C6H10 in a shock tube. At the highest temperatures studied experimentally J. H. Kiefer and J. N. Shah, J. Phys. Chem., 91, 3024 (1987)], the average thermal vibrational energy is greater than the reaction threshold and therefore 〈ΔE〉 (up and down steps) is positive for molecules at that energy, rather than negative; the converse is true at lower temperatures. The calculated incubation time, in which the decomposition rate constant rises to 1/e of its steady state value, is found to be only weakly dependent on temperature (at constant pressure) between 1500 K and 2000 K and to depend almost exclusively on 〈ΔEd (down steps, only), and not on collision probability model. Simulations of the experimental data show the magnitude of 〈ΔEd depends weakly on assumed collision probability model, but is nearly independent of temperature. The second moment 〈ΔE½ is found to be independent of both temperature and transition probability model. The experimental data are not very sensitive to the possible energy-dependence of 〈ΔEd for a wide range of assumptions. It is concluded that the observed experimental “delay times” probably can be identified with the incubation time; further experiments are desirable to test this possibility and obtain more direct measures of the incubation time.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号