首页 | 本学科首页   官方微博 | 高级检索  
     


PHOTOCHEMISTRY OF TYPE I ACID-SOLUBLE CALF SKIN COLLAGEN: DEPENDENCE ON EXCITATION WAVELENGTH
Authors:Julian M.  Menter   George D.  Williamson   Kimberly  Carlyle   Cyril L.  Moore Isaac  Willis
Affiliation:Departments of Medicine, Morehouse School of Medicine and 3Department of Chemistry, Spelman College, Atlanta, GA 30310, USA;Departments of Biochemistry, Morehouse School of Medicine;Department of Chemistry, Spelman College, Atlanta, GA 30310, USA
Abstract:
Although previous studies have demonstrated that the predominant photochemistry of type I collagen under 254 nm irradiation may be attributed either to direct absorption by tyrosine/phenylalanine or to peptide bonds, direct collagen photochemistry via solar UV wavelengths is much more likely to involve several age- and tissue-related photolabile collagen fluorophores that absorb in the latter region. In this study, we compare and contrast results obtained from irradiation of a commercial preparation of acid-soluble calf skin type I collagen in solution with UVC (primarily 254 nm), UVA (335–400nm) and broad-band solar-simulating radiation (SSR; 290^1–00nm). Excitation spectroscopy and analysis of photochemically induced disappearance of fluorescence (fluorescence fading) indicates that this preparation has at least four photolabile fluorescent chromophores. In addition to tyrosine and L-3,4-dihydroxyphenylalanine, our sample contains two other fluorophores. Chromophore I, with emission maximum at 360 nm, appears to be derived from interacting aromatic moieties in close mutual proximity. Chromophore II, with broad emission at430–435 nm, may be composed of one or more age-related molecules. Collagen fluorescence fading kinetics are sensitive to excitation wavelength and to conformation. Under UVC, chromophore I fluorescence disappears with second-order kinetics, indicating a reaction between two proximal like molecules. Adherence to second-order kinetics is abrogated by prior denaturation of the collagen sample. A new broad, weak fluorescence band at400–420 nm, attributable to dityrosine, forms under UVC, but not under solar radiation. This band is photolabile to UVA and UVB wavelengths. Amino acid analysis indicates significant destruction of aromatic amino acids under UVC, but not under UVA or SSR. When properly understood, collagen fluorescence fading phenomena may act as a sensitive molecular probe of structure, conformation and reactivity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号