首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Vibrationally promoted electron emission from low work-function metal surfaces
Authors:White Jason D  Chen Jun  Matsiev Daniel  Auerbach Daniel J  Wodtke Alec M
Institution:Department of Chemistry and Biochemistry, University of California at Santa Barbara, 93106-9510, USA.
Abstract:We observe electron emission when vibrationally excited NO molecules with vibrational state v, in the range of 9 < or = v < or =18, are scattered from a Cs-dosed Au surface. The quantum efficiency increases strongly with v, increasing up to 10(-2) electrons per NO (v) collision, a value several orders of magnitude larger than that observed in experiments with similar molecules in the ground vibrational state. The electron emission signal, as a function of v, has a threshold where the vibrational excitation energy slightly exceeds the surface work function. This threshold behavior strongly suggests that we are observing the direct conversion of NO vibrational energy into electron kinetic energy. Several potential mechanisms for the observed electron emission are explored, including (1) vibrational autodetachment, (2) an Auger-type two-electron process, and (3) vibrationally promoted dissociation. The results of this work provide direct evidence for nonadiabatic energy-transfer events associated with large amplitude vibrational motion at metal surfaces.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号