首页 | 本学科首页   官方微博 | 高级检索  
     


Optimization of STEM-HAADF Electron Tomography Reconstructions by Parameter Selection in Compressed Sensing Total Variation Minimization-Based Algorithms
Authors:Juan M. Muñoz-Ocaña  Ainouna Bouziane  Farzeen Sakina  Richard T. Baker  Ana B. Hungría  Jose J. Calvino  Antonio M. Rodríguez-Chía  Miguel López-Haro
Affiliation:1. Departamento de Estadística e Investigación Operativa, Facultad de Ciencias, Universidad de Cádiz, Campus Puerto Real, Puerto Real, Cádiz, 11510 Spain;2. Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Puerto Real, Puerto Real, Cádiz, 11510 Spain;3. EaStChem, School of Chemistry, University of St Andrews, Fife, St Andrews, KY16 9ST UK
Abstract:
A novel procedure to optimize the 3D morphological characterization of nanomaterials by means of high angle annular dark field scanning-transmission electron tomography is reported and is successfully applied to the analysis of a metal- and halogen-free ordered mesoporous carbon material. The new method is based on a selection of the two parameters (μ and β) which are key in the reconstruction of tomographic series by means of total variation minimization (TVM). The parameter-selected TVM reconstructions obtained using this approach clearly reveal the porous structure of the carbon-based material as consisting of a network of parallel, straight channels of ≈6 nm diameter ordered in a honeycomb-type arrangement. Such an unusual structure cannot be retrieved from a TVM 3D reconstruction using default reconstruction values. Moreover, segmentation and further quantification of the optimized 3D tomographic reconstruction provide values for different textural parameters, such as pore size distribution and specific pore volume that match very closely with those determined by macroscopic physisorption techniques. The approach developed can be extended to other reconstruction models in which the final result is influenced by parameter choice.
Keywords:3D characterization  compressed-sensing  mesoporous materials  parameters selection  STEM-HAADF electron tomography
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号