首页 | 本学科首页   官方微博 | 高级检索  
     检索      


QUANTUM YIELD RATIO OF THE FORWARD and BACK LIGHT REACTIONS OF BACTERIORHODOPSIN T LOW TEMPERATURE and PHOTOSTEADY-STATE CONCENTRATION OF THE BATHOPRODUCT K*
Authors:S P Balashov  E S Imasheva  R Govindjee  T G Ebrey
Abstract:The maximum photosteady state fraction of K, xKmax, and the ratio of the quantum yields of the forward and back light reactions, trans-bacteriorhodopsin (bR) hArr; K, φbRK, were obtained by measuring the absorption changes produced by illumination of frozen water-glycerol (1:2) suspensions of light-adapted purple membrane at different wavelengths at -165°C. An independent method based on the second derivative of the absorption spectrum in the region of the β-bands was also used. It was found that The quantum yield ratio (0.66 ± 0.06) was found to be independent of excitation wavelength within experimental error in the range510–610 nm. The calculated absorption spectrum of K has its maximum at603–606 nm and an extinction 0.85 ± 0.03 that of bR. At shorter wavelengths there are P-bands at 410, 354 and 336 rim. Using the data of Hurley et al. (Nature 270,540–542, 1977) on relative rates of rhodopsin bleaching and K formation, the quantum yield of K formation was determined to be 0.66 ± 0.04 at low temperature. The quantum efficiency of the back reaction was estimated to be 0.93 ± 0.07. These values of quantum efficiencies of the forward and back light reactions of bR at - 165°C coincide with those recently obtained at room temperature. This indicates that the quantum efficiencies of both forward and back light reactions of bacteriorhodopsin are temperature independent down to -165°C.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号