首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Poly (N-isopropylacrylamide) microgel based assemblies for organic dye removal from water: microgel diameter effects
Authors:Deepika Parasuraman  Edmund Leung  Michael J Serpe
Institution:1. Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
Abstract:Poly (N-isopropylacrylamide)-co-acrylic acid (pNIPAm-co-AAc) microgel based assemblies (aggregates) were synthesized from microgels of various diameters via polymerization of the crosslinker N,N′-methylenebisacrylamide (BIS) in the presence of microgels in solution. We investigated the ability of the respective aggregates to remove the organic, azo dye molecule 4-(2-hydroxy-1-napthylazo) benzenesulfonic acid sodium salt (Orange II) from water at both room and elevated temperatures. The results from the microgel aggregates made from 1.1-μm-diameter Parasuraman and Serpe. ACS Applied Materials & Interfaces, 2011] microgels were compared to aggregates synthesized from 321-nm and 1.43-μm-diameter microgels. Aggregates made from the same size microgels showed increased uptake efficiency as the concentration of BIS in the aggregates was increased, while for a given BIS concentration, the uptake efficiency increased with increasing microgel size in the aggregate. We attribute this to the “nature” of the aggregates; aggregates have void space between the microgels that can serve as reservoirs for Orange II uptake—the void spaces are hypothesized to increase with larger diameter microgels. By exploiting the thermoresponsive nature of the microgels, and microgel based aggregates, 85.3 % removal efficiencies can be achieved. Finally, all uptake trends for the aggregates, at room temperature, were fit with a Langmuir sorption isotherm model.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号