首页 | 本学科首页   官方微博 | 高级检索  
     检索      


"Turn-on" fluorescent sensing with "reactive" probes
Authors:Jun Mi Eun  Roy Basab  Ahn Kyo Han
Institution:Department of Chemistry and Center for Electro-Photo Behaviors in Advance Molecular Systems, POSTECH, San 31 Hyoja-dong, Pohang, 790-784, Republic of Korea.
Abstract:Chemical probes are valuable tools for the investigation of biochemical processes, diagnosis of disease markers, detection of hazardous compounds, and other purposes. Therefore, the development of chemical probes continues to grow through various approaches with different disciplines and design strategies. Fluorescent probes have received much attention because they are sensitive and easy-to-operate, in general. To realize desired selectivity toward a given analyte, the recognition site of a fluorescent probe is designed in such a way to maximize the binding interactions, usually through weak molecular forces such as hydrogen bonding, toward the analyte over other competing ones. In addition to such a supramolecular approach, the development of fluorescent probes that sense analytes through chemical reactions has witnessed its usefulness for achieving high selectivity, in many cases, superior to that obtainable by the supramolecular approach. Creative incorporations of the reactive groups to latent fluorophores have provided novel chemical probes for various analytes. In this feature article, we overview the recent progress in the development of turn-on fluorescent probes that are operating through chemical reactions triggered by target analytes. Various chemical reactions have been implemented in the development of many reactive probes with very high selectivity and sensitivity toward target analytes. A major emphasis has been focused on the type of chemical reactions utilized, with the hope that further explorations can be made with new chemical reactions to develop reactive probes useful for various applications.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号