首页 | 本学科首页   官方微博 | 高级检索  
     

基于GA-SVM的太原市空气质量指数预测
引用本文:尹琪,胡红萍,白艳萍,王建中. 基于GA-SVM的太原市空气质量指数预测[J]. 数学的实践与认识, 2017, 0(12): 113-120
作者姓名:尹琪  胡红萍  白艳萍  王建中
作者单位:中北大学理学院,山西太原,030051
基金项目:国家自然科学基金(61275120)
摘    要:针对大气环境的复杂多变性和不确定性,采用太原市2014年至2016年的空气污染物监测数据,分别将改进的粒子群算法(IPSO)和遗传算法(GA)与支持向量机(SVM)相结合,通过参数寻优构建新模型完成对空气质量指数(AQI)的预测.实验结果表明,GA-SVM在预测精度、误差率和可靠性方面均优于IPSO-SVM与SVM.因此GA-SVM模型更适用于AQI的预测,为大气污染防治提供了科学合理的理论依据和新的预测方法.

关 键 词:粒子群优化算法  遗传算法  支持向量机  信息粒化  空气质量指数预测

Prediction of Air Quality Index in Taiyuan City Based on GA-SVM
YIN Qi,HU Hong-ping,BAI Yan-ping,WANG Jian-zhong. Prediction of Air Quality Index in Taiyuan City Based on GA-SVM[J]. Mathematics in Practice and Theory, 2017, 0(12): 113-120
Authors:YIN Qi  HU Hong-ping  BAI Yan-ping  WANG Jian-zhong
Abstract:In view of complexity and uncertainty of the atmospheric environment,in this thesis,through the adoption of the monitoring data of air pollutants in Taiyuan city from 2014 to 2016,the improved particle swarm algorithm (IPSO) and genetic algorithm (CA) are combined with support vector machine (SVM) respectively to predict the air quality index (AQI) by building the model optimization for parameter optimization.The experimental results show that GA-SVM is better than IPSO-SVM and SVM in prediction accuracy,error rate and reliability.Therefore,the GA-SVM model is more suitable for the prediction of AQI,which provides some scientific basis and a new prediction method for the prevention and control of air pollution.
Keywords:particle swarm optimization algorithm  genetic algorithm  support vector machine  information granulation  air quality index prediction
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号