首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Equilibrium states in homogeneous turbulence with baroclinic instability
Authors:M Timoumi  A Salhi
Institution:1. Département de Physique, Faculté des Sciences de Tunis, Campus Universitaire, 1060, Tunis, Tunisia
Abstract:The evolution of energies and fluxes in homogeneous turbulence with baroclinic instability is analyzed using the linear theory. The mean flow corresponds to a vertical shear having a uniform mean velocity gradient, ?U i /?x j  = S δ i1 δ j3, a system rotation about the vertical axis with rate Ω, Ω i  = Ωδ i3, and uniform buoyancy gradients in the spanwise ${(\partial B{/}\partial x_2\,{=}\, N_h^2\,{=}\,-2\Omega S)}The evolution of energies and fluxes in homogeneous turbulence with baroclinic instability is analyzed using the linear theory. The mean flow corresponds to a vertical shear having a uniform mean velocity gradient, ∂U i /∂x j  = S δ i1 δ j3, a system rotation about the vertical axis with rate Ω, Ω i  = Ωδ i3, and uniform buoyancy gradients in the spanwise (?B/?x2 = Nh2 = -2WS){(\partial B{/}\partial x_2\,{=}\, N_h^2\,{=}\,-2\Omega S)} and vertical (?B/?x3 = Nv2){(\partial B{/}\partial x_3\,{=}\,N_v^2)} directions. Computations based on the rapid distortion theory (RDT) are performed for several values of the rotation number R = 2Ω/S and the Richardson number Ri = Nv2/S2 < 1{R_i\,{=}\,N_v^2/S^2 <1 }. It is shown that, during an initial phase, the energies and the buoyancy fluxes are sensitive to the effects of pressure and viscosity. At large time, the ratios of energies, as well as the normalized fluxes, evolve to an asymptotically constant value, while the pressure–strain correlation scaled with the product of the turbulent kinetic energy by the shear rate approaches zero. Accordingly, an analytical parametric study based on the “pressure-less” approach (PLA) is also presented. The analytical study indicates that, when R i  < 1, there is an exponential instability and equilibrium states of turbulence, in agreement with RDT. The energies and the buoyancy fluxes grow exponentially for large times with the same rate (γ in St units). The asymptotic value of the ratios of energies yielded by RDT is well described by its PLA counterpart derived analytically. At R i  = 0, the asymptotic value of γ increases with increasing R approaching 2 for high rotation rates. At low rotation rates, an important contribution to the kinetic energy comes from the streamwise kinetic energy, whereas, at high rotation rates, the contribution of the vertical kinetic energy is dominant. When 0 < R i  < 1 and R 1 0{R\ne 0}, the asymptotic value of γ decreases as R i increases so as it becomes zero at R i  = 1.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号