首页 | 本学科首页   官方微博 | 高级检索  
     


Tunable electronic and optical properties of GaS/GaSe van der Waals heterostructure
Affiliation:University of Babylon, College of Education for Pure Sciences, Department of Physics, Hilla, Iraq
Abstract:We have used first-principles calculations to investigate the electronic and optical properties of GaS/GaSe van der Waals heterostructures formed by stacking two-dimensional GaSe and GaSe monolayers. Our findings confirm that the GaS/GaSe heterostructures transform from an indirect to a direct band gap material for the two stackings considered in this study. In addition, we found that the direct band gaps are 1.780 eV and 1.736 eV for AA and AB stacking, respectively. It is observed that the behavior of the optical properties of AA stacking is similar to AB stacking with some differences in details and both heterostructures located in UV range. The refractive index values are 2.21 (AA pattern) and 2.18 (AB pattern) at zero photon energy limit and increase to 2.937 for AA and 2.18 AB patterns and both located in the visible region. More importantly, the GaS/GaSe heterostructures have a variety of extraordinary electronic and optical properties. Accordingly, these heterostructures can be useful for the solar cell, nanoelectronics, and optoelectronic applications.
Keywords:Electronic and optical properties  GaS/GaSe heterostructure  Stacking effect  2D materials
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号