Abstract: | ![]() For describing the mass transfer processes in channels, Taylor's dispersion theory is widely used. This theory makes it possible, with asymptotic rigor, to replace the complete diffusion (heat conduction) equation with a convective term that depends on the coordinate transverse to the flow by an effective diffusion (dispersion) equation with constant coefficients, averaged over the channel cross-section. In numerous subsequent studies, Taylor's theory was generalized to include more complex situations, and novel algorithms for constructing the dispersion equations were proposed. For thin film flows a theory similar to Taylor's leads to a matrix of dispersion coefficients.In this study, Taylor's theory is extended to film flows with a non-one-dimensional velocity field and anisotropic diffusion tensor. These characteristics also depend to a considerable extent on the spatial coordinates and time. The dispersion equations obtained can be simplified in regions in which the effective diffusion coefficient tensor changes sharply. |