首页 | 本学科首页   官方微博 | 高级检索  
     


Design of cellular manufacturing systems using Latent Semantic Indexing and Self Organizing Maps
Authors:Nikolaos Ampazis  Ioannis Minis
Affiliation:(1) Department of Financial and Management Engineering, University of the Aegean, 82100 Chios, Greece
Abstract:
A new, efficient clustering method for solving the cellular manufacturing problem is presented in this paper. The method uses the part-machine incidence matrix of the manufacturing system to form machine cells, each of which processes a family of parts. By doing so, the system is decomposed into smaller semi-independent subsystems that are managed more effectively improving overall performance. The proposed method uses Self Organizing Maps (SOMs), a class of unsupervised learning neural networks, to perform direct clustering of machines into cells, without first resorting to grouping parts into families as done by previous approaches. In addition, Latent Semantic Indexing (LSI) is employed to significantly reduce the complexity of the problem resulting in more effective training of the network, significantly improved computational efficiency, and, in many cases, improved solution quality. The robustness of the method and its computational efficiency has been investigated with respect to the dimension of the problem and the degree of dimensionality reduction. The effectiveness of grouping has been evaluated by comparing the results obtained with those of the k-means classical clustering algorithm.AMS classification: 62H30
Keywords:Cellular manufacturing systems  self-organizing maps  latent semantic indexing
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号