Abstract: | Differential thermal analysis has been used to study the fusion of aqueous thermally reversible gels of gelatin and polyacrylylglycinamide (PAG). In the case of gelatin gels, endotherms close to the melting point are readily observed and these are sometimes preceeded by a small exothermic heat of gel reorganization. Calculations are presented to show that breaking of the gelatin gel network requires only a small fraction of the observed endothermic heat of fusion and that most of the heat is required for melting larger crystallites within gelatin aggregates and for perhaps a helix → coil transition. Failure to observe endotherms by DTA over the known temperature range of fusion of PAG gels is consistent with prior measurements and conclusions. The noncrystallinity of PAG gels and soluble aggregates together with a heat of crosslinking of only ?5 to ?10 kcal/mole of crosslinks places the heat of fusion of PAG gels outside the lower limits of DTA sensitivity. |