首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Insight-HXMT observations of the first binary neutron star merger GW170817
Abstract:Finding the electromagnetic(EM) counterpart of binary compact star merger, especially the binary neutron star(BNS) merger,is critically important for gravitational wave(GW) astronomy, cosmology and fundamental physics. On Aug. 17, 2017,Advanced LIGO and Fermi/GBM independently triggered the first BNS merger, GW170817, and its high energy EM counterpart,GRB 170817 A, respectively, resulting in a global observation campaign covering gamma-ray, X-ray, UV, optical, IR, radio as well as neutrinos. The High Energy X-ray telescope(HE) onboard Insight-HXMT(Hard X-ray Modulation Telescope) is the unique high-energy gamma-ray telescope that monitored the entire GW localization area and especially the optical counterpart(SSS17 a/AT2017 gfo) with very large collection area(~1000 cm~2) and microsecond time resolution in 0.2-5 MeV. In addition,Insight-HXMT quickly implemented a Target of Opportunity(ToO) observation to scan the GW localization area for potential X-ray emission from the GW source. Although Insight-HXMT did not detect any significant high energy(0.2-5 MeV) radiation from GW170817, its observation helped to confirm the unexpected weak and soft nature of GRB 170817 A. Meanwhile,Insight-HXMT/HE provides one of the most stringent constraints(~10~(-7) to 10~(-6) erg/cm~2/s) for both GRB170817 A and any other possible precursor or extended emissions in 0.2-5 MeV, which help us to better understand the properties of EM radiation from this BNS merger. Therefore the observation of Insight-HXMT constitutes an important chapter in the full context of multi-wavelength and multi-messenger observation of this historical GW event.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号