首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A Smart Photosensitizer–Manganese Dioxide Nanosystem for Enhanced Photodynamic Therapy by Reducing Glutathione Levels in Cancer Cells
Authors:Huanhuan Fan  Guobei Yan  Dr Zilong Zhao  Dr Xiaoxiao Hu  Wenhan Zhang  Hui Liu  Xiaoyi Fu  Ting Fu  Prof Xiao‐Bing Zhang  Prof Weihong Tan
Institution:1. Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, China;2. Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
Abstract:Photodynamic therapy (PDT) has been applied in cancer treatment by utilizing reactive oxygen species to kill cancer cells. However, a high concentration of glutathione (GSH) is present in cancer cells and can consume reactive oxygen species. To address this problem, we report the development of a photosensitizer–MnO2 nanosystem for highly efficient PDT. In our design, MnO2 nanosheets adsorb photosensitizer chlorin e6 (Ce6), protect it from self‐destruction upon light irradiation, and efficiently deliver it into cells. The nanosystem also inhibits extracellular singlet oxygen generation by Ce6, leading to fewer side effects. Once endocytosed, the MnO2 nanosheets are reduced by intracellular GSH. As a result, the nanosystem is disintegrated, simultaneously releasing Ce6 and decreasing the level of GSH for highly efficient PDT. Moreover, fluorescence recovery, accompanied by the dissolution of MnO2 nanosheets, can provide a fluorescence signal for monitoring the efficacy of delivery.
Keywords:cancer cells  glutathione  MnO2 nanosheets  photodynamic therapy  singlet oxygen
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号