The preparation,phase relationships,and Eu-151 Mössbauer spectroscopy of europium tungsten bronzes and related phases |
| |
Authors: | C.S. Dimbylow I.J. McColm C.M.P. Barton N.N. Greenwood G.E. Turner |
| |
Affiliation: | School of Materials Science, University of Bradford UK;Inorganic Chemistry Department, University of Leeds UK |
| |
Abstract: | Crystal chemistry and phase relations for the bronze-forming region of the EuWO system have been investigated. A bronze EuxWO3 is stable up to 1000°C when x ? 0.125 and in the region 0.085 ? x ? 0.125 the symmetry is cubic. A tetragonal bronze exists at x = 0.05, and an orthorhombic bronze with a structure closely related to the orthorhombic form of WO3 exists below x = 0.01. Mössbauer spectra at room temperature and at 80 K indicate that in all these phases the europium is highly ionized as Eu(III) with no electron localization to give (EuII) even at low values for x. The decomposition products of the bronzes have been established, and the Mössbauer parameters for the highly nonstoichiometric tungstates EuxWO4 were determined. Both Eu(II) and Eu(III) resonances were obtained, and a cation vacancy model for EuxWO4 was found to fit the data best. In conformity with the foregoing data, a sample of composition “Eu2W2O7” was found not be be a pyrochlore but to comprise a mixture of Eu6WO12, EuxWO4, and W. The phase relationships for the europium bronze system EuxWO3 are compared with those of other ionic bronzes NaxWO3, LixWO3, and AlxWO3. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|